About 505,000 results
Open links in new tab
  1. Why are regression problems called "regression" problems?

    I was just wondering why regression problems are called "regression" problems. What is the story behind the name? One definition for regression: "Relapse to a less perfect or developed state."

  2. Regression with multiple dependent variables? - Cross Validated

    Nov 14, 2010 · Is it possible to have a (multiple) regression equation with two or more dependent variables? Sure, you could run two separate regression equations, one for each DV, but that doesn't …

  3. regression - When is R squared negative? - Cross Validated

    Also, for OLS regression, R^2 is the squared correlation between the predicted and the observed values. Hence, it must be non-negative. For simple OLS regression with one predictor, this is equivalent to …

  4. regression - Linear vs Nonlinear Machine Learning Algorithms - Cross ...

    Jan 6, 2021 · Three linear machine learning algorithms: Linear Regression, Logistic Regression and Linear Discriminant Analysis. Five nonlinear algorithms: Classification and Regression Trees, Naive …

  5. regression - Interpreting the residuals vs. fitted values plot for ...

    None of the three plots show correlation (at least not linear correlation, which is the relevant meaning of 'correlation' in the sense in which it is being used in "the residuals and the fitted values are …

  6. Why Isotonic Regression for Model Calibration?

    Jan 27, 2025 · It appears that isotonic regression is a popular method to calibrate models. I understand that isotonic guarantees a monotonically increasing or decreasing fit. However, if you can get a …

  7. How should outliers be dealt with in linear regression analysis ...

    What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?

  8. regression - Trying to understand the fitted vs residual plot? - Cross ...

    Dec 23, 2016 · A good residual vs fitted plot has three characteristics: The residuals "bounce randomly" around the 0 line. This suggests that the assumption that the relationship is linear is reasonable. The …

  9. regression - Linear model with both additive and multiplicative effects ...

    Sep 23, 2020 · In a log-level regression, the independent variables have an additive effect on the log-transformed response and a multiplicative effect on the original untransformed response:

  10. regression - Difference between forecast and prediction ... - Cross ...

    I was wondering what difference and relation are between forecast and prediction? Especially in time series and regression? For example, am I correct that: In time series, forecasting seems to mea...