
regression - What does it mean to regress a variable against another ...
Dec 4, 2014 · When we say, to regress Y Y against X X, do we mean that X X is the independent variable and Y the dependent variable? i.e. Y = aX + b Y = a X + b.
How to describe or visualize a multiple linear regression model
I'm trying to fit a multiple linear regression model to my data with couple of input parameters, say 3.
What is the lasso in regression analysis? - Cross Validated
Oct 19, 2011 · LASSO regression is a type of regression analysis in which both variable selection and regulization occurs simultaneously. This method uses a penalty which affects they value of …
regression - When is R squared negative? - Cross Validated
With linear regression with no constraints, R2 R 2 must be positive (or zero) and equals the square of the correlation coefficient, r r. A negative R2 R 2 is only possible with linear regression when either …
Can I merge multiple linear regressions into one regression?
Oct 3, 2021 · Although one can compute a single regression for all data points, if you include model assumptions such as i.i.d. normal errors, the for all points combined can't be "correct" if the four …
When conducting multiple regression, when should you center your ...
Jun 5, 2012 · In some literature, I have read that a regression with multiple explanatory variables, if in different units, needed to be standardized. (Standardizing consists in subtracting the mean and dividin...
How should outliers be dealt with in linear regression analysis ...
What statistical tests or rules of thumb can be used as a basis for excluding outliers in linear regression analysis? Are there any special considerations for multilinear regression?
Regression with multiple dependent variables? - Cross Validated
Nov 14, 2010 · Is it possible to have a (multiple) regression equation with two or more dependent variables? Sure, you could run two separate regression equations, one for each DV, but that doesn't …
interpretation - Interpreting logistic regression coefficients in ...
Oct 17, 2024 · Omitting any outcome-associated predictor from a logistic regression model leads to bias in coefficient estimates of the included predictors. See this page for a nice explanation.
When is it ok to remove the intercept in a linear regression model ...
Hence, if the sum of squared errors is to be minimized, the constant must be chosen such that the mean of the errors is zero.) In a simple regression model, the constant represents the Y-intercept of the …