
如何理解线性判别分析(LDA)算法?能够简洁明了地说明一下LDA算 …
LDA的特性 LDA具有以下属性: LDA假设数据是高斯数据。 更具体地说,它假定所有类共享相同的协方差矩阵。 LDA在K−1维子空间中找到线性决策边界。 因此,如果自变量之间存在高阶相互作用,则 …
如何理解线性判别分析(LDA)算法?能够简洁明了地说明一下LDA算 …
LDA也不同于因子分析,它无需区分独立变量和因变量(也称为标准变量)。 当我们已经知道分组时就可以使用判别分析,而聚类分析是在不知道组的情况下进行的。 简单来说,判别函数分析就是分类。 …
Python实现lda主题模型的流程是什么,怎么开始写代码? - 知乎
利用Python实现主题建模和LDA 算法 主题建模是一种用于找出文档集合中抽象“主题”的统计模型。LDA(Latent Dirichlet Allocation)是主题模型的一个示例,用于将文档中的文本分类为特定的主题 …
用lda做主题提取,困惑度曲线都是递增,分类的词也都不理想,有什么 …
用lda做主题提取,困惑度曲线都是递增,分类的词也都不理想,有什么方法解决? 用lda做主题提取,gensim、lda、sklearn库都是试过了,困惑度曲线都是递增,分类的词也都不理想。 分词用的哈 …
LDA (Latent Dirichlet Allocations)主题模型如何计算主题强度?
LDA (Latent Dirichlet Allocations)主题模型如何计算主题强度? 最近在研究LDA主题模型,看论文中多次提及主题强度展示和主题演化的分析,很想代码复现,但苦于论文中并未阐明实现方法。 另外,在 …
通俗的解释主流的主题模型及其扩展所适合解决的问题,包括PLSA, …
能不能通俗的解释原始的PLSA与LDA,及扩展的supervised LDA[1]与Labeled LDA[2]方法的优势和劣势,及其解…
利用python做LDA文本分析,该从哪里入手呢? - 知乎
利用python做LDA文本分析,该从哪里入手呢? 硕二,最近打算利用topic modeling结合推荐系统做一些研究。 之前一直都是在看理论方面的知识(推荐系统基础,LDA的数学基础还有吉布斯采样),… …
机器学习(五):数据预处理--降维-PCA和LDA
Apr 2, 2022 · 降维后可用维度数量不同。 LDA降维后最多可生成C-1维子空间(分类标签数-1),因此LDA与原始维度N数量无关,只有数据标签分类数量有关;而PCA最多有n维度可用,即最大可以选 …
LDA 在文本分类中,如何提高分类器的精确度? - 知乎
如上图,LDA是一种监督分类技术,它在降维过程中考虑了标签,这类降维技术广泛应用于生物识别、生物信息学和化学等领域,而PCA(主成分分析)是一种非监督的降维方法。 LDA的工作原理 LDA的 …
LDA 与 LSA、PLSA、NMF相比,哪个效果更好?为什么? - 知乎
但是2008年的时候,pLSA已经被新兴的LDA掩盖了。 LDA是pLSA的generalization:一方面LDA的hyperparameter设为特定值的时候,就specialize成pLSA了。 从工程应用价值的角度看,这个数学 …